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Abstract—Program synthesis (PS) is a field devoted to auto-
matically generating computer programs from high-level speci-
fications, and genetic programming (GP) is one commonly-used
way to achieve PS. PushGP, operating on a stack-based language,
is considered as a state-of-the-art program synthesizer among
GPs, while another research trend foucus on the grammar-based
languages due to the readability and the ease of maintenance.
In this paper, we propose the repetitive structure genetic pro-
gramming (RSGP), a new grammar-based program synthesizer
under the pure functional programming paradigm. RSGP defines
a recursive function to simulate the single-layer loop behavior
and leverages the minimum redundancy maximum relevance
(mRMR) feature selection with the Pearson correlation coefficient
(PCC) to select the capable and diverse programs for the next
generation. The experiment results show that RSGP outperforms
PushGP, CBGP, and HOTGP in terms of the number of successful
programs on CountOdds and LastIndexofZero from PSB1, Luhn
from PSB2, and 3 out of 4 designed problems. Additionally,
the ablation study indicates that using mRMR with PCC does
encourage proper problem decomposition with the trade-off of
diminishing the search ability within a similar neighborhood.
RSGP utilizes an adaptation mechanism to balance the trade-off
to automatically fit the needs of different problems.

Index Terms—Program Synthesis, Genetic Programming

I. INTRODUCTION

Program synthesis (PS) is an area focusing on automat-
ically generating computer programs from high-level spec-
ifications [1]. Inductive program synthesis, also known as
programming by examples (PBE) [2], is a commonly-used
approach to PS [3], [4]. Synthesizer alleviates the workload
of programmers [1] and enables users without programming
language knowledge to create computer programs [3]. Users
provide the synthesizer with inputs along with their cor-
responding outputs, and the synthesizer generates programs
based on those examples [5]. The advantage of PBE lies in its
simplicity for representing program behaviors [5], [6].

The vast search space makes PS challenging to find solu-
tions through brute-force methods, and hence, PS usually em-
ploys heuristic approaches like genetic programming (GP) [7].
Two approaches in PS using GP are stack-based GP and
grammar-based GP. In stack-based GP, PushGP [8] was intro-
duced in 2001, while Plush, introduced in 2018 [9], represents
programs in PushGP using the linear genome. This approach

addresses issues such as the lack of uniformity caused by
tree-based GP in mutation. Subsequently, UMAD [10] im-
proves mutation strategies under linear genome representa-
tion. Later, CBGP [11] based on PushGP was introduced
to enhance the readability. As for grammar-based GP, two
of most representative algorithms are the grammatical evolu-
tion [12] and G3P [13]. Both approaches utilize rules from the
grammar of a programming language to generate and evolve
programs. However, the drawback of grammar-based GP is
that the search space expands rapidly as the grammar size
increases [4]. The following works are addressing this issue.
The strong typed genetic programming (STGP) [14] further
enforces that arguments of the functions are of the correct
data type to avoid unnecessary program generation. One of
the research [15] utilizes textual descriptions of problems
to reduce the search space, and determines which grammar
to use based on keywords mentioned in the description.
Another research [16] shows the performance of PS under the
pure functional programming paradigm is consistently better
than under the imperative programming paradigm in most
selected problems. HOTGP [7] also performs pure functional
program synthesis and achieves competitive performance on
benchmarks compared to other state-of-the-art (SOTA) GP
algorithms. This paper compares our proposed method with
three representative algorithms: PushGP [8], CBGP [11], and
HOTGP [7]. The following provides a brief introduction to
each of them.

PushGP [8] is one of the SOTA program synthesizers [7],
[17], [18] in GP that operates a stack-based language called
Push [19]. In PushGP, operands are pushed into Push and
popped out to perform the corresponding operator. Stack-based
programming languages significantly differ from commonly-
used imperative programming languages; therefore, program-
mers often face challenges in reading, comprehending, and
maintaining them [4].

To address this drawback, CBGP [11] integrates the stack-
based programming language with functional programming.
While based on PushGP, this approach compiles the program
using type-safe abstract syntax trees (AST). This abstraction
enables program generation in languages such as Python and
addresses the concerns of readability and usability associated



Fig. 1. The flowchart of the RSGP algorithm.

with Push [4]. The results show that CBGP achieves a higher
success rate in finding solutions for a subset of test problems
compared to other GP methods. However, CBGP fails to solve
problems that require non-trivial control flow [20].

To further enhance the grammar-based GP performance on
benchmark problems, HOTGP [7] operates Haskell programs
that support higher-order functions under the pure functional
programming paradigm since pure functional programming
avoids side effects due to its fundamental property of refer-
ential transparency, ensuring that functions produce the same
output for the same input [21].

In this work, we propose the repetitive structure genetic
programming (RSGP), a grammar-based genetic programming
approach under the pure functional programming paradigm. To
simulate the single-layer loop behavior, we define a recursive
function that is similar to the fold (reduction) function [22],
[23] since the concept of loops, which serves as a basic
primitive in most imperative languages, does not exist in
pure functional programming. Furthermore, we leverage the
minimum redundancy maximum relevance (mRMR) feature
selection [24] with the Pearson correlation coefficient (PCC)
to select the capable and diverse programs for the next
generation. We aim to achieve the SOTA level by addressing
the aforementioned issues. Our approach is subject to the
following limitations. The program synthesized by RSGP
inputs an integer list and outputs a single integer. Additionally,
our approach does not yet consider nested loops.

The rest of the paper is organized as follows. Section II
presents the details of our proposed method. Section III
presents the experiment setting and results. Section IV con-
cludes the paper.

TABLE I
SUMMARY OF SYMBOLS IN THIS PAPER

Symbol Definition Value

α Crossover rate of RSGP. 0.1
w mRMR redundancy weight. 0.9
r The Pearson correlation coefficient. -
e The fitness of a program. -

s, s′ The best fitness before and after -
evolving, respectively.

X , y The example inputs and outputs. -

P , O The symbols denote population and -
offspring, respectively.

Plow , Pbase, Phigh Three subpopulations in the adaptation. -

Algorithm 1: Evolution
Input: P : population; o: the number of offspring to

generate; X: inputs; y: outputs; w: mRMR
redundancy weight;

Output: P : the new population
1 O ← empty set
2 for i = 1 to o do
3 rand← sample from uniform [0, 1)
4 p1 ← Exponential ranking selection from P
5 if rand < α then
6 p2 ← Exponential ranking selection from P
7 Oi ← SubtreeCrossover(p1, p2)
8 else
9 Oi ← SubtreeMutation(p1)

10 P ← mRMRSelection(P , O, X , y, w) (Algorithm 2)
11 return P

II. METHODOLOGY

This section begins with an overview of RSGP procedures
and a grammar table used for program initialization. We then
detail the recursive function L for simulating single-layer
loops. Next, the mRMR selection and the adaptation mech-
anism are described. Finally, we explain the simplification
and linear scaling methods applied to the best program. We
summarize the symbols mentioned in this paper in Table I.

A. RSGP Algorithm

Fig. 1 illustrates the flow of the algorithm. Initially, each
program in the population is initialized using the grow method,
which creates program trees within a maximum depth limit.
The algorithm then progresses to the evolution stage. At the
end of the evolution, mRMR is used to select the population
for the next generation, and an adaptation mechanism adjusts
the parameter of mRMR. Upon algorithm termination, the best
program is simplified to enhance generalization, and linear
scaling is applied to address the issue of different scales
between the output of the best program and the ground truth.
The termination condition is either when RSGP finds the
solution or when the evaluation reaches the maximum limit.
The program with the best fitness on the train set is called



TABLE II
CONTEXT-FREE GRAMMAR TABLE OF RSGP

1 < program > ::= < int >
2 < int > ::= ( L < list > < f func > < g func > ) | ( < int op > < int > < int > ) | ( if < bool > < int > < int > )
3 | ( < list op > < list > ) |< const >
4 < list > ::= ( cdr < list > ) | ( mapcar < λ > < list > ) | ( filter < λ bool > < list > ) | ( cons < int > < list > ) | input
5 < λ > ::= ( if < λ bool > < λ > < λ > ) | ( < int op > < λ > < λ > ) |< const >| u
6 < f func > ::= ( if < f bool > < f func > < f func > ) | ( < int op > < f func > < f func > ) |< const >| u | v | idx
7 < g func > ::= ( if < g bool > < g func > < g func > ) | ( < int op > < g func > < g func > ) |< const >| u | idx
8 < bool > ::= ( < logic op > < bool > < bool > ) | ( not < bool > ) | ( < bool op > < int > < int > )
9 < λ bool > ::= ( < logic op > < λ bool > < λ bool > ) | ( not < λ bool > ) | ( < bool op > u < λ > )
10 < f bool > ::= ( < logic op > < f bool > < f bool > ) | ( not < f bool > ) | ( < bool op > u < f func > )
11 < g bool > ::= ( < logic op > < g bool > < g bool > ) | ( not < g bool > ) | ( < bool op > u < g func > )
12 < int op > ::= + | - | * | floor | mod
13 < list op > ::= car | last
14 < logic op > ::= and | or
15 < bool op > ::= > |>= | = | /= |< |<=
16 < const > ::= constant

Fig. 2. The example of a program (L input (+ (mod u 2) v) (mod u 2)) generated using the context-free grammar table.

“the best program”. The following subsection introduces the
grammar table of RSGP used for program initialization.

Algorithm 1 presents the pseudo-code for the evolution
mechanism within a generation of RSGP. In this paper, the
population is denoted as P . The number of offspring in each
generation is represented by o. The X and y represent the
example inputs and outputs, and w is a parameter of mRMR
selection. We apply subtree crossover or subtree mutation to
the selected programs. The subtree crossover follows Koza’s
GP [25]. The subtree mutation either replaces a subtree of
the parent with a randomly initialized program or selects a
subtree of the parent to replace a subtree of a randomly
initialized program. To reduce search space, the evolution
follows the STGP [14], which enforces data type constraints
during the evolution. We use the exponential ranking selec-
tion [26], which selects a program based on its fitness rank.
The probability of selecting the ith best program from P is
in proportion to (0.9993)i in RSGP.

B. Grammar Table of RSGP

Table II displays the context-free grammar of RSGP uti-
lizing S-expression [27] for representation. As illustrated in
Fig. 2, each non-terminal is replaced according to the pro-
duction rules as shown in Table II. Finally, the program (L
input (+ (mod u 2) v) (mod u 2)) is generated.
car represents the first element of the list, and cdr

represents the rest of the list. For instance, if the list input is
[1, 2, 3], (car input) is 1, and (cdr input) is [2, 3].

last represents the last element of the list. mapcar is used to
apply a specified function to each element of a list, producing
a new list containing the results. filter is used to remove
elements from a list that do not satisfy the given condition.
cons is used to concatenate a value to the front of the list.
/= represents not equal to. To prevent zero division errors,
floor and mod (line 12) return 0 when the denominator
is zero. The non-terminal symbols <λ>, <f_func>, and
<g_func> represent integer-returning lambda expressions.
The terminal symbols on the right of ::=, such as u, v,
or idx, are input arguments in the integer-returning lambda
expressions mentioned earlier. The next subsection will detail
L, u, v, idx, <f_func>, and <g_func>.

C. Recursive Function for Single-Layer Loop Simulation

To synthesize repetitive structure under the pure functional
programming paradigm, we define L in our grammar table.
The recursive definition of L is as follows:
L(input, idx, f , g) ={
g(car(input)), len(input) =1
f(car(input), L(cdr(input), idx+1, f , g)), otherwise,

(1)

where input represents an integer list, and idx represents the
index variable. The definitions of car and cdr follow the last
subsection. L is comprised of a base case g (triggered when
input length is 1) and a recursive case f . This L simulates



Fig. 3. The subtree crossover mechanism in L function.

Fig. 4. The examples of the generated programs from our grammar table.

the single-layer loop behavior in imperative programming.
Fig. 2 illustrates the expression trees for both functions, with
f represented in blue and g in orange. The f function is
(+ (mod u 2) v), and the g function is (mod u 2) in
Fig. 2. Here, u is the first element of the input, and v is the
recursive result of the remaining input. Take the generated
program in Fig. 2, which counts how many odd numbers in
the input, for example, if input is [3, 6, 7], then evaluating
L([3, 6, 7], 0, f , g) computes f (3, L([6, 7], 1, f , g)), which
yields 2. This result is derived from adding 1 (the result of 3
mod 2) to v, where v is the outcome of L([6, 7], 1, f , g),
which equals 1. Specifically, v is the result of recursion on
the remaining input. L([6, 7], 1, f , g) computes as f (6, L([7],
2, f , g)), resulting in 1 since the value 6 is even, and L([7],
2, f , g) computes as 1 (the result of 7 mod 2).

In Table II, <g_func> specifies the base case options. It
requires two input arguments: u and idx. <f_func> spec-
ifies the recursive case options. This function requires three
input arguments: u, v, and idx. Fig. 3 shows the crossover
mechanism in L, with both of the two parents belonging to
the same part (either blue or orange). Fig. 4 illustrates L as
an optional element in programs and emphasizes that L is not
necessarily the root of programs.

D. mRMR Selection and Weight Adaptation

The mRMR algorithm is a feature selection technique used
in data mining and machine learning. It aims to select a subset
of features that maximizes relevance with the target variable
while minimizing redundancy with the selected features. In-

Algorithm 2: mRMRSelection
Input: P : population; O: offspring; X: inputs; y:

outputs; w: mRMR redundancy weight;
Output: The selected population

1 Q← P ∪ O
2 S ← empty set
3 for i = 1 to |P | do
4 for j = 1 to |Q| do
5 Calculate mRMRScore(Qj , S, X , y, w) of Qj

(Algorithm 3)
6 Si ← get the program with the highest

mRMRScore from Q
7 Remove Si from Q

8 return S

spired by this algorithm, we leverage (µ + λ) selection that
selects |P | programs from the |P | + |O| candidates for the
next generation. Fig. 5 illustrates an example to calculate
the mRMR score. The mRMR score of a program in RSGP
is determined by its relevance with the ground truth minus
w times its redundancy with the already selected programs.
The strategy is outlined in Algorithms 2 and 3. We get the
output of each program in the population P with the example
inputs X , and we measure the relevance with the example
outputs y and redundancy with each other programs. Notably,
unlike the traditional mRMR method, which utilizes mutual
information, our method employs the absolute value of PCC to
measure relevance and redundancy. Additionally, we introduce
a parameter w to adjust the weight given to redundancy.

Our adaptation mechanism is inspired by the paper [28],
which specifies the parameters for each subpopulation [29].
Algorithm 4 presents the adaptation framework. Algorithm 5
presents the adaptation mechanism. As depicted in Fig. 6, each
generation randomly divides the population P into the three
subpopulations Plow, Pbase, and Phigh with equal sizes, and
evolves them independently. The adaptation step adjusts the
parameter w based on subpopulation performance, aiming to



Algorithm 3: mRMRScore
Input: Qj : a candidate program; S: the selected

programs; X: inputs; y: outputs; w: mRMR
redundancy weight;

Output: mRMR score
1 relevance← absolute value of PCC between the

output of Qj and y
2 redundancy ← 0
3 if |S| > 0 then
4 for i = 1 to |S| do
5 Increase redundancy by the absolute value of

PCC between the output of Qj and Si

6 Divide redundancy by |S|
7 score← relevance− w × redundancy
8 return score

find the optimal w for each problem. If none of the best fitness
of any subpopulation is better than s which is the best fitness
before evolving in this generation, w remains unchanged. If
Phigh achieves the best fitness, w is increased by 0.1; if Plow

leads, w is reduced by 0.1.

Fig. 5. An example of mRMR score calculation. Programs calculate the rel-
evance with the ground truth and the redundancy with the selected programs.
For simplicity, there is only one selected program in this example.

E. Program Simplification and Linear Scaling

To improve the program generalizability and readability,
simplification of the best program after the evolution is
a commonly-used technique in program synthesis genetic
programming [7], [8], [11]. We employ two approaches to
simplify our program. The first method utilizes the local
search strategy [7]: If there is a subprogram of a program
with an output type identical to its own, and if the fit-
ness of the subprogram does not worsen, the subprogram
replaces the original program. The second one focuses on
simplifying boolean statements by removing redundant code
segments. For instance, when seeking the maximum of x1 and
x2, the program (if (or (> x1 x2) (> x1 x1)) x1

Algorithm 4: Framework of Adaptation
Input: P : population; O: offspring; X: inputs; y:

outputs; w: mRMR redundancy weight;
Output: The best program

1 Randomly initialize population P
2 while ¬ShouldTerminate do
3 s← The best fitness from P
4 Plow, Pbase, Phigh ← Random shuffle and divide

P into three equally sized subpopulations
5 for i = 1 to 10 do
6 Plow ← Evolution(Plow, |Plow|

2 , X , y, w − 0.1)
7 Pbase ← Evolution(Pbase, |Pbase|

2 , X , y, w)
8 Phigh ← Evolution(Phigh, |Phigh|

2 , X , y,
w + 0.1)

9 w ← Adaptation(Plow, Pbase, Phigh, s, w)
(Algorithm 5)

10 P ← Plow ∪ Pbase ∪ Phigh

11 return the best program in P after program
simplification and linear scaling

Fig. 6. The adaptation mechanism in RSGP.

x2) is generated. If the tentative replacement of ((or (>
x1 x2) (> x1 x1)) with its subset (> x1 x2) does
not worsen the fitness, we keep such replacement; we revert
it otherwise.

The final step of RSGP involves applying linear scaling to fit
the output of the best program to the ground truth. As shown in
Equation 2, the closer the absolute value of PCC between the
output of the program and the ground truth is to 1, the better
the fitness is. Using PCC, however, may result in a perfectly



Algorithm 5: Adaptation
Input: Plow; Pbase; Phigh; s: The best fitness of the

last generation; w: mRMR redundancy weight;
Output: The new weight

1 if Both the best fitness of Plow and Phigh are not
better than s then

2 return w

3 if Plow achieves the best fitness and w > 0 then
4 return w − 0.1

5 if Phigh achieves the best fitness and w < 1 then
6 return w + 0.1

7 return w

capable program (e.g., x) linearly deviated from the ground
truth (e.g. 2x), and hence linearly scaling is required.

III. EXPERIMENT RESULTS

This section introduces test problems to assess the perfor-
mance of our proposed method, followed by a description of
the experimental setup. We then present the results, including
an ablation study, and conclude with a discussion. The source
code is available at GitHub1.

A. Test Problems

PSB1 [30] and PSB2 [31] are two well-known general
program synthesis benchmark suites in GP that collect in-
troductory programming exercises. We select a subset of
problems that meet the limitations of our method to test.
We select CountOdds, LastIndexofZero from PSB1, and Fu-
elCost, Luhn from PSB2. In addition, we present 4 novel
problems, Minimum (MIN), Minimum positive integer (MPI),
Minimum positive integer subtracts maximum positive integer
(MPSMN), and Maximum positive integer times maximum
positive integer (MPTMN) to further test the ability of looping
and problem decomposition. The details of the 4 designed
problems are provided in Table III.

B. Experiment Setup

The population size is 1000, and the maximum number of
evaluations is 5 × 105 for each run. In order to divide the
population into three equal subpopulations during adaptation,
and ensure that the population size is divisible by 2, the actual
size of each subpopulation is 332. Programs were limited to a
maximum depth of 15. The crossover rate α is set to 0.1. The
initial mRMR redundancy weight w is set to 0.9. f function,
g function, and lambda function were limited to a maximum
depth of 3. The fitness function e of a program is as follows:

e =

{
inf, if error occurs
1− |r|, otherwise,

(2)

1http://www.github.com/howard0027/RSGP

Fig. 7. Median ranking from 8 problems.

where r is the PCC between the output of the program and
the ground truth, and inf is infinity. The value of inf is 262

in RSGP. Error occurs if one of the following happens:
• The depth of the program exceeds 15.
• The depth of lambda expression exceeds 3.
• When the program does invalid instructions, such as

accessing the first element of an empty list.
• The program executes over 5000 instructions.

If the |e| of the best program on the train set is less than
10−12, RSGP will stop early. A successful program represents
the mean absolute error (MAE) of the best program is 0 on
the test set after program simplification and linear scaling.

C. Results and Discussions

We compare RSGP with PushGP2, CBGP3, and HOTGP4.
Apart from setting the maximum number of evaluations to
5× 105, the other configurations remain default. We conduct
100 runs for each test problem. Table IV and Fig. 7 report
the results. The results show that RSGP performs the best in
terms of the number of successful programs on CountOdds
and LastIndexofZero from PSB1, Luhn from PSB2, and 3
out of 4 designed problems. Additionally, the performance of
RSGP lags only behind PushGP on FuelCost and MPTMN.
The performance of RSGP on the MPTMN problem is much
worse than on the MPSMN problem, even though they both
can decompose into two subproblems, the minimum positive
integer and the maximum negative integer, respectively. The
possible reason is that the fitness of the subproblem on the
MPTMN problem is not lower on the MPSMN problem. The
fitness of the minimum positive integer is about 0.1376 on
the MPSMN problem. However, the fitness of the same sub-
problem is about 0.2345 on the MPTMN problem. This result
suggests that problem decomposition is more challenging on
the MPTMN problem.

To assess the effect of program simplification, Table IV
also presents the generalization rate before and after program
simplification. The generalization rate is defined as the ratio
of the number of runs that find a successful program to the
number of runs that find the best program. The results indicate
that program simplification enhances the generalization rate to
1.0 for all the 8 problems.

2https://github.com/lspector/Clojush
3https://github.com/erp12/cbgp-lite
4https://github.com/mcf1110/hotgp



TABLE III
THE DESCRIPTION AND DETAILS FOR EACH PROBLEM

Problem Description Input length Train Test

MIN Given a list of integers, find the minimum value in the list. The constant range is [-100, 100]. [1, 50] 100 1000

MPI Given a list of integers, find the minimum positive value in the list. The given list must contain at least [1, 50] 100 1000
one positive integer. The constant is 0.

MPSMN Given a list of integers, find the difference from the minimum positive value and maximum negative [2, 50] 100 1000
value in the list. The given list must contain both positive integers and negative integers. The constant is 0.

MPTMN Given a list of integers, find the product from the minimum positive value and maximum negative [2, 50] 100 1000
value in the list. The given list must contain both positive integers and negative integers. The constant is 0.

TABLE IV
THE NUMBER OF SUCCESSFUL PROGRAMS FOUND IN EACH PROBLEM, THE GENERALIZATION RATE AND THE PROGRAM SIZE OF RSGP BEFORE AND
AFTER PROGRAM SIMPLIFICATION. THE BEST RESULTS OF EACH PROBLEM ARE UNDERLINED. VALUES IN BOLD REPRESENT THE PERFORMANCE IS

STATISTICALLY SIGNIFICANTLY BETTER THAN THE SECOND-BEST ALGORITHM WITH A P-VALUE OF 0.05. OPTIMUM REPRESENTS THE MINIMUM
PROGRAM SIZE FROM ALL OF THE SOLUTIONS. THE WORD ”PS” DENOTES PROGRAM SIMPLIFICATION IN THIS TABLE.

Problem Number of Successful Programs Generalization Rate of RSGP Program Size of RSGP
RSGP PushGP CBGP HOTGP Before PS After PS Optimum Before PS After PS

CountOdds 59 8 0 56 0.98 1.00 10 12 12
LastIndexofZero 81 35 9 0 1.00 1.00 14 18 18

FuelCost 30 45 0 9 0.97 1.00 12 15 15
Luhn 5 0 0 0 1.00 1.00 40 148 111
MIN 100 100 100 0 0.96 1.00 9 9 9
MNP 93 79 22 0 0.97 1.00 13 13 13

MPSMN 80 39 0 0 0.94 1.00 27 28 27
MPTMN 15 38 0 0 1.00 1.00 27 34 27

The other advantage of program simplification lies in reduc-
ing the program size by removing unnecessary code. Table IV
also presents the smallest program size from the best programs
before and after program simplification. Program size is the
node count of the corresponding AST. The optimal size of a
program represents the size is equal to the minimum program
size of any solution. Before program simplification, RSGP
finds programs with the optimal size on 2 out of 8 problems.
After program simplification, RSGP finds programs with op-
timal size on 4 out of 8 problems. For instance, in solving
the MIN problem, RSGP produces (L input (if (and
(/= u -68) (<= u v)) u v) u). After removing the
spurious code segment (/= u -68) by program simplifica-
tion, the result is (L input (if (<= u v) u v) u).

RSGP finds a successful program for the Luhn problem in
5 out of 100 runs, while none of the compared algorithms
ever solves this problem within 5 × 105 evaluations in 100
runs. To assess the capabilities of the compared algorithms
in solving the Luhn problem, we parallelly execute 100 runs
for 5 days per run. The average number of evaluations of
PushGP, CBGP, and HOTGP are approximately 2.41 × 106,
3.76 × 107, and 1.56 × 106, respectively. The number of
evaluations each run far exceeds 5×105, and yet none of them
finds a successful program. Even though RSGP is subject to
limitations in solving specific problems, the results show that
RSGP is capable of solving the Luhn problem to some extent.

D. Ablation Study
To verify the effectiveness of mRMR selection with PCC

and adaptation in RSGP, we conduct the ablation study in-
volving 3 cases. Table V presents the number of successful

programs found in each case. Case 1 employs (µ+λ) selection
which selects the |P | programs from the |P |+ |O| candidates
based on their MAE. Case 2 utilizes mRMR feature selection
and uses PCC in the fitness. Case 3 is the method we proposed.

The results show that Case 2, which incorporates mRMR
selection and uses PCC in the fitness, improves the perfor-
mance on 6 out of 8 problems compared to Case 1. The
results in Case 2 indicate that selecting capable and diverse
programs of mRMR selection improves the performance.
Additionally, this improvement is particularly significant in the
MPSMN and MPTMN problems, which are specially designed
to demonstrate the problem decomposition ability. Such results
suggest using mRMR with PCC encourages proper problem
decomposition. However, the performance of FuelCost drops.

The possible reason for the drop in the performance of
FuelCost is that mRMR avoids selecting programs for the next
generation with similar outputs. Some programs contain capa-
ble substructures, but they may not be selected because their
outputs are similar to the outputs of the selected programs.
Therefore, Case 3 utilizes the adaptation mechanism to adjust
the mRMR redundancy weight w to fit the needs of different
problems. Case 3 leads to substantial improvement in FuelCost
with the trade-off of minor drops on the other problems as
shown in Table V when compared with Case 2. This trade-
off is worthwhile and enables our method to achieve a higher
success rate across a wide range of problems.

IV. CONCLUSION

This paper proposed RSGP, which utilized the recursive
function L to simulate the single-layer loop behavior under the
pure functional programming paradigm. To select the capable



TABLE V
THE NUMBER OF SUCCESSFUL PROGRAMS FOUND IN EACH CASE. THE BEST RESULTS OF EACH PROBLEM ARE UNDERLINED.

Case Mechanism Problems
mRMR with PCC Adaptation CountOdds LastIndexofZero FuelCost Luhn MIN MNP MPSMN MPTMN

1 39 91 24 0 100 96 32 2
2 X 60 92 2 5 100 97 80 24

3 (RSGP) X X 59 81 30 5 100 93 80 15

and diverse programs for the next generation, RSGP leveraged
mRMR feature selection with PCC during the evolutionary
process. The experiment results showed RSGP outperformed
three SOTA algorithms in terms of the number of successful
programs on CountOdds and LastIndexofZero from PSB1,
Luhn from PSB2, and 3 out of 4 designed problems. The
ablation study indicated that using mRMR with PCC does
encourage proper problem decomposition with the trade-off of
diminishing the search ability within a similar neighborhood.
RSGP utilized an adaptation mechanism to balance the trade-
off to automatically fit the needs of different problems.

For future work, we would like to explore more general
inductive program synthesis methods, including nested loop
synthesis, synthesizing the program whose output is not a
single value, and enabling a larger grammar table size.
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